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What is this lecture about?

• Probabilistic graphical models as a powerful tool for
decoding human mental states

• Dynamic Bayesian networks:
– Representation
– Learning
– Inference

• Matlab’s Bayes Net Toolbox (BNT) – Kevin Murphy
• Applications and class projects
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Decoding human mental states

• Mindreading
– Our faculty for attributing mental states to

others
– Nonverbal cues / behaviors / sensors
– We do that all the time, subconsciously
– Vital for communication, making sense of

people, predicting their behavior



People States

• Emotions (affect)
• Cognitive states
• Attention

• Intentions
• Beliefs
• Desires

Actress Florence Lawrence who was known as
“The Biograph Girl”. From A Pictorial History of
the Silent Screen.



Channels of People States
Observable:
• Head gestures
• Facial expressions
• Emotional Body language
• Posture / Gestures
• Voice
• Text
• Behavior: pick and manipulate objects

Up-close sensing:
• Temperature
• Respiration
• Pupil dilation
• Skin conductance, ECG, Blood pressure
• Brain imaging



Reading the mind in the
Autism Research Centre, UK (Baron-Cohen et al., 2003)
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Reading the mind in
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Gestures

Thinking Interested
evaluation

Nose touch
(deception)

Mouth cover
(deception)

Evaluation,
skepticism

Head on palms
(boredom)

Choosing

Images from Pease and Pease (2004),
The Definitive Book of Body Language



Reading the mind using
• Feasibility and pragmatics of classifying working memory load with an

electroencephalograph Grimes, Tan, Hudson, Shenoy, Rao. CHI08
• Dynamic Bayesian Networks for Brain-Computer Interfaces. Shenoy & Rao. Nips04
• Human-aided Computing: Utilizing Implicit Human Processing to Classify Images

Shenoy, Tan. CHI08.
• OPPORTUNITY – AFFECTIVE STATES

EEG



Multi-modal

• Combining Brain-computer Interfaces With Vision for Object
Categorization Ashish Kapoor, Pradeep Shenoy, Desney Tan. CVPR 2008
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Feature point
tracking
(Nevenvision)

Head pose
estimation

Facial feature
extraction

Head & facial
action unit
recognition

Head & facial
display
recognition

Mental state
inference

Hmm … Let
me think
about this

Mindreader
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Face+Physiology



Mindreader Platform

MindReaderAPI Wrappers

SDK
(for developers)

Application 
(for non-developers)

Sample apps

Tracker

OpenCV

nPlot

External Libs/APIs
MindreaderPlatform

Downloadables



Class Project – Pepsi data
Anticipation Disappointment -

Satisfaction

Liking /
Disliking

25 consumers, 30 trials, 30 min. videos!



Multi-level Dynamic Bayesian Network



Probabilistic graphical models

Probabilistic models

Directed
(Bayesian Belief Nets)

Graphical models

Undirected
(Markov Nets)
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Representation of Bayes Net

• A graphical representation for the joint distribution
of a set of variables

• Structure
– A set of random variables makes up the nodes in the

network. (random variables can be discrete or
continuous)

– A set of directed links or arrows connects pairs of nodes
(specifies directionality / causality).

• Parameters
– Conditional probability table / density
– quantifies the effects of parents on child nodes
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Setting up the DBN

• The graph structure
–Expert knowledge, make assumptions

about the world / problem at hand
–Learn the structure from data

• The parameters
–Expert knowledge, intuition
–Learn the parameters from data



Sprinkler - Structure
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Conditional Probability Tables

• Each row contains the conditional
probability of each node value for a
each possible combination of values
of its parent nodes.

• Each row must sum to 1.
• A node with no parents has one row

(the prior probabilities)



Sprinkler - Parameters



Why Bayesian Networks?

-  Graph structure supports
- Modular representation of knowledge
- Local, distributed algorithms for inference

and learning
- Intuitive (possibly causal) interpretation



Why Bayesian Networks?

-  Factored representation may have
exponentially fewer parameters than full
joint P(X1,…,Xn) =>

- lower time complexity (less time for inference)
- lower sample complexity (less data for learning)
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Why Bayesian Networks?

People Patterns
• Uncertainty
• Multiple modalities
• Temporal
• Top-down,bottom-up

Bayesian Networks
• Probabilistic
• Sensor fusion
• Dynamic models
• Hierarchical models
• Top-down, bottom-up
• Graphical->intuitive

representation, efficient
inference
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Bayes Net ToolBox (BNT)

• Matlab toolbox by Kevin Murphy
• Ported by Intel (Intel’s open PNL)
• Problem set 4

• Representation
– bnet, DBN, factor graph, influence (decision) diagram
– CPDs – Gaussian, tabular, softmax, etc

• Learning engines
– Parameters: EM, (conjugate gradient)
– Structure: MCMC over graphs, K2

• Inference engines
– Exact: junction tree, variable elimination
– Approximate: (loopy) belief propagation, sampling



Case study: Mental States
Structure

• Represent the mental state agreeing, given two features:
head nod and smile.  (all are discrete and binary)

• %First define the structure
• N = 3; % the total number of nodes
• intra = zeros(N);
• intra(1,2) = 1;
• intra(1,3) = 1;

• %specify the type of node: discrete, binary
• node_sizes = [2 2 2];
• onodes = 2:3;  % observed nodes
• dnodes = 1:3;  % all the nodes per time slice
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Case study: Mental States
Structure (One classifier or many?)

• Depends on whether the classes are mutually
exclusive or not(if yes, we could let hidden node
be discrete but say take 6 values)



Case study: Mental States
Structure - Dynamic

• But hang on, what about the temporal aspect of this? (my
previous mental state affects my current one)
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Time slice =1 Time slice =2



Case study: Mental States
Structure - Dynamic

• More compact representation
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Case study: Mental States
Structure - Dynamic

• Represent the mental state agreeing, given two features:
head nod and smile and make it dynamic

• %intra same as before
• inter = zeros(N);
• inter(1,1) = 1;

• % parameter tying reduces the amount
of data needed for learning.

• eclass1 = 1:3; % all the nodes per time slice
• eclass2 = [4 2:3];
• eclass = [eclass1 eclass2];

• %instantiate the DBN
• dynBnet = mk_dbn(intra, inter, node_sizes, 'discrete', dnodes, 'eclass1',

eclass1, 'eclass2', eclass2, 'observed', onodes);
Rana el Kaliouby
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Case study: Mental States
Parameters – (hand-coded)

• How many conditional probability
tables do we need to specify?
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Case study: Mental States
Parameters – (hand-coded)

% prior P(agreeing)
• dynBnet.CPD{1} = tabular_CPD(dynBnet, 1, [0.5 0.5]);

% P(2|1) head nod given agreeing
• dynBnet.CPD{2} = tabular_CPD(dynBnet, 2, [0.8 0.2 0.2 0.8]);

% P(3|1) smile given agreeing
• dynBnet.CPD{3} = tabular_CPD(dynBnet, 3, [0.5 0.9 0.5 0.1]);

% P(4|1) transition prob
• dynBnet.CPD{4} = tabular_CPD(dynBnet, 4, [0.9 0.2 0.1 0.8]);

 2 = F 2 = T

 1 = F 0.8 0.2

 1 = T 0.2 0.8

High prob of nod if the person is agreeing, v. low prob that we see a nod
if the person is not agreeing



Case study: Mental States
Parameters – (hand-coded)

% prior P(agreeing)
• dynBnet.CPD{1} = tabular_CPD(dynBnet, 1, [0.5 0.5]);

% P(2|1) head nod given agreeing
• dynBnet.CPD{2} = tabular_CPD(dynBnet, 2, [0.8 0.2 0.2 0.8]);

% P(3|1) smile given agreeing
• dynBnet.CPD{3} = tabular_CPD(dynBnet, 3, [0.5 0.9 0.5 0.1]);

% P(4|1) transition prob
• dynBnet.CPD{4} = tabular_CPD(dynBnet, 4, [0.9 0.2 0.1 0.8]);

 2 = F 2 = T

 1 = F 0.8 0.2

 1 = T 0.2 0.8

 3 = F 3 = T

 1 = F 0.5 0.5

 1 = T 0.9 0.1

Low prob of smile if the person is agreeing, equal prob of smile or not if
the person is not agreeing



Case study: Mental States
Parameters – (hand-coded)

% prior P(agreeing)
• dynBnet.CPD{1} = tabular_CPD(dynBnet, 1, [0.5 0.5]);

% P(2|1) head nod given agreeing
• dynBnet.CPD{2} = tabular_CPD(dynBnet, 2, [0.8 0.2 0.2 0.8]);

% P(3|1) smile given agreeing
• dynBnet.CPD{3} = tabular_CPD(dynBnet, 3, [0.5 0.9 0.5 0.1]);

% P(4|1) transition prob
• dynBnet.CPD{4} = tabular_CPD(dynBnet, 4, [0.9 0.2 0.1 0.8]);

 2 = F 2 = T

 1 = F 0.8 0.2

 1 = T 0.2 0.8

 3 = F 3 = T

 1 = F 0.5 0.5

 1 = T 0.9 0.1

 4 = F 4 = T

 1 = F 0.9 0.1

 1 = T 0.2 0.8

High prob of agreeing now if I was just agreeing, low prob of agreeing
now if I wasn’t agreeing



Case study: Mental States
Sampling the DBN

• T = 2;
• ncases = 1000;

• for i=1:ncases
– ev = sample_dbn(dynBnet, 'length', T);

• end
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T=1 T=2
[1]

[2]

[1000]
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Case study: Mental States
Parameters – learning

• Hierarchical BNs: you can learn the parameters of
each level separately

• Learning the parameters:
– If the data is full observable, then MLE (counting

occurrences) (resulting model is applicable to exact
inference)

• Learning the structure:
– Search strategy to explore the possible structures;
– Scoring metric to select a structure
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Case study: Mental States
Parameters – MLE - discriminability



Learning from data in BNT

• Define DBN structure as before
• Define DBN params as before (random CPTs)
• Also need to define inference/learning engine

• Load the example cases
• Learn the params (specifying the no. of iterations for

algorithm to converge)

• [dynBnet2, LL, engine2] =
learn_params_dbn_em(engine2, cases, 'max_iter', 20);
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Inference

• Updating your belief state
–Time propagation
–Update by measurement

–Algorithm Bayes filter
• Givens: bel(xt-1), zt

• Step 1: bel(xt) = ∑  p(xt|xt-1) bel(xt-1)
• Step 2: bel(xt|zt) = c p(zt | xt) bel(xt)
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Inference in DBNs

Inference is belief updating.

Filtering: recursively estimate the belief state 
Prediction: predict future state 
Smoothing: estimate state of the past given all the evidence up to the current time



Case study: Mental States
Inference in BNT

• %instantiate an inference engine
• engine2 = smoother_engine(jtree_2TBN_inf_engine(dynBnet2));

• engine2 = enter_evidence(engine2, evidence);
• m = marginal_nodes(engine2, 1, 2); % referring to 1st node (hidden class

node) in 2nd time slice (t+1)
• inferredClass = argmax(m.T);
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Mental state inference
Sliding Window
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Real time Inference in BNT



Inference – Naïve Approach

• Unrolling the DBN for a desired number of
timesteps and treat as a static BN

• Apply evidence at appropriate times and
then run any static algorithm

• Simple, but DBN becomes huge, inference
runs out of memory or takes too long.



Inference – Better Approach

• We don’t need the entire unrolled DBN
• A DBN represents a process that is stationary & Markovian:

• Stationary:
– the node relationships within timeslice t and the transition

function from t to t+1 do not depend on t
– So we need only the initial timeslice and sufficient consecutive

timeslices to show the transition function

• Markovian:
– the transition function depends only on the immediately preceding

timeslice and not on any previous timeslices (e.g., no arrows go from t
to t+2)

– Therefore the nodes in a timeslice separate the past from the future.

• Use a 2TDBN that represents the first two timeslices of the
process, and we use this structure for inference.



Inference – Better Approach

• Dynamic inference boils down to doing static inference on
the 2TDBN and then following some protocol for
“advancing” forward one step.

• Interface Algorithm or 1.5 Slice Junction Tree Algorithm
(Murphy, 2002) [also in your problem set]

• Exact Inference
• Intuition:

1.Initialization
a) Transform DBN into 2 junction trees

a) Moralize
b) Triangulate
c) Build junction tree

b)    Initialize values on the junction trees
a) Multiply CPTs onto clique potentials

2.Advance (belief propagation)
a) Insert evidence into the junction tree
b) Propagate potentials



Prerequisite concepts

abd

bcd

bd

Junction tree
A tree of maximal cliques in
an undirected graph

Clique
A graph in which every vertex
is connected to every other
vertex in the graph.

a

b c

d

Two cliques: 
C1 = {a,b,d}, C2 = {b,c,d}

Moralizing a graph
Marrying parents of a child

d

cb



1.5 Slice Junction Tree

• Outgoing interface It

– Set of nodes in timeslice t with children in timeslice t+1
– {A1, B1, C1} is the outgoing interface of timeslice 1

• It d-separates the past from the future (Murphy, 2002)
– “past” = all nodes in timeslices before t and all non-interface

nodes in timeslice t
– “future” = nodes in timeslice t+1 and later
– Therefore the outgoing interface encapsulates all necessary

information about previous timeslices to do filtering.

A1

B1

D1

C1

A2

B2

D2

C2



Algorithm Outline
• Initialization:

– Create two junction trees J1 and Jt:
• J1 is the junction tree for the initial timeslice, created from timeslice 1

of the 2TDBN
• Jt is the junction tree for each subsequent timeslice and is created from

timeslice 2 of the 2TDBN and the outgoing interface of timeslice 1

– Time is initialized to 0

• Queries:
– Marginals of nodes at the current timeslice can be queried:
– If current time = 0, queries are performed on “_1” nodes in J1

– If current time > 0, queries are performed on “_2” nodes in Jt

• Evidence:
– Evidence can be applied to any node in the current timeslice:
– If current time = 0, evidence is applied to “_1” nodes in J1

– If current time > 0, evidence is applied to “_2” nodes in Jt



Algorithm Outline

• Advance:
– Increment the time counter
–Use outgoing interface from active

timeslice to do inference in next timeslice
• Since the outgoing interface d-separates the

past from the future, this ensures that when
we do inference in the next timeslice we are
taking everything that has occurred “so far”
into account.
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Initialization of J1

A1

B1

D1

C1

A1

B1

D1

C1

A1B1C1

B1C1D1

B1C1

In-clique out-clique

[1] Remove all nodes in
timeslice 2 from the 2TDBN.
Identify nodes in outgoing
interface of timeslice 1, call it I1

[2] Moralize: marry parents of a
child. Add edges to make I1 a
clique

[3] Triangulate, find cliques, form
junction tree. Find clique that contains
I1, call it in the in-clique, out-clique

[4] Initialize clique potentials to 1’s,
multiply nodes’ CPTs onto cliques

I1



Initialization of Jt

[1] Starting with the whole
2TDBN, identify nodes in
outgoing interface of timeslice
1 and 2, call them I1 and I2

[2] Convert to 2TDBN to
1.5DBN (remove non-interface
nodes in timeslice 1)

A1

B1

D1

C1

A2

B2

D2

C2

I1 I2

A1

B1

C1

A2

B2

D2

C2



Initialization of Jt

[3] Moralize:
(marry C1,C2 parents of D2)
(marry C1,B2 parents of D2)
(marry B2,C2 parents of D2) ….

A1

B1

C1

A2

B2

D2

C2

A1

B1

C1

A2

B2

D2

C2
then
(marry A2,B2 parents of C2)
(marry B1,C1 parents of B2)
(marry A1,B1 parents of C1) ….



Initialization of Jt

[4] Find cliques, form junction
tree
Cliques:
{A1B1 C1B2 }
{A1 C1B2 A2}
{C1B2 C2 D2 }
{C1A2 B2C2 }
Find clique that contains I1 (in-
clique), and I2 out-clique

then triangulate
(marry A1,B2 parents of C1)
(marry C1,A2 parents of B2)

A1

B1

C1

A2

B2

D2

C2

A1B1C1B2

In-clique
out-clique

A1C1B2A2

C1A2B2C2

C1B2C2D2

A1C1B2 C1A2B2

C1B2C2

[5] Initialize clique potentials to 1’s, multiply nodes’ CPTs
onto cliques (only of nodes in timeslice 2 because evidence
is applied and nodes are queried only in timeslice 2)



Initialization Summary

A1B1C1B2

In-clique
out-clique

A1C1B2A2

C1A2B2C2

C1B2C2D2

A1C1B2 C1A2B2

C1B2C2

A1B1C1

B1C1D1

B1C1

In-clique out-clique



Advance (Belief propagation)

• At time t:
– Get current junction tree (if time = 0, J1, otherwise Jt)
– Update beliefs in current junction tree
– Get αt

• Increment time
• After time is incremented

– Get current junction tree (always Jt)
– Multiply αt onto in-clique potential of new junction tree



Advance (Belief propagation)

A1B1C1B2

In-clique
out-clique

A1C1B2A2

C1A2B2C2

C1B2C2D2

A1C1B2 C1A2B2

C1B2C2

A2B2C2B3

In-clique
out-clique

A2C2B2A3

C2A3B3C3

C2B3C3D3

A2C2B3 C2A3B3

C2B3C3

α2



Approximate Inference

• Why?
– to avoid exponential complexity of

exact inference in discrete loopy
graphs

– Because one cannot compute
messages in closed form (even
for trees) in the non-linear/non-
Gaussian case

• Algorithms:
– Deterministic approximations:

loopy BP, mean field, structured
variational, etc

– Stochastic approximations: MCMC
(Gibbs sampling), likelihood
weighting, particle filtering, etc

Computational Time

E
rr

o
r

Loopy BP, EP
(Tom Minka)

Monte Carlo

Extended EP
(Alan Qi &

Tom Minka)
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Bayesian Network Classifiers
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Project ideas

• Pepsi data (speak to Hyungil / Rana)
• Combining EEG data w/ Face data (trying to get

an SDK from Emotiv)
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Summary

• Decoding human mental states
• Dynamic Bayesian Networks

– Representation
– Learning
– Inference

• Matlab’s BNT
• Email for project ideas / brainstorming


